
TRAQID - Traffic-Related AirQuality Image Dataset
Om Rajendra Kathalkar

Signal Processing and Communication Research Centre
International Institute of Information Technology

Hyderabad
Hyderabad, Telangana, IN

om.kathalkar@research.iiit.ac.in

Nitin Nilesh
Signal Processing and Communication Research Centre

International Institute of Information Technology
Hyderabad

Hyderabad, Telangana, IN
nitin.nilesh@research.iiit.ac.in

Sachin Chaudhari
Signal Processing and Communication Research Centre

International Institute of Information Technology
Hyderabad

Hyderabad, Telangana, IN
sachin.chaudhari@iiit.ac.in

Anoop Namboodiri
Center for Visual Information Technology (CVIT)
International Institute of Information Technology

Hyderabad
Hyderabad, Telangana, IN

anoop@iiit.ac.in

Good Satisfactory Moderate Poor Very Poor Severe

Fr
on

t
R

ea
r

D
ay

N
ig

ht

27°C

27°C

29°C

27°C

Monsoon

Monsoon

Winter

Monsoon

Monsoon

Monsoon

Summer

Winter

Summer Monsoon

Winter

Winter

Winter

Winter

Winter

Winter

Winter

Summer

Summer

Summer

Winter

Summer

28°C

28°C

30°C

26°C

29°C

29°C

29°C

28°C 26°C

29°C

28°C

28°C 29°C

29°C

34°C

27°C

31°C

31°C

24°C

31°C

Summer Winter

Figure 1: Visual spectrum of TRAQID, demonstrating front and rear traffic imagery, day and night captures, and AQI diversity
in the twin cities, bridging image data to air quality analysis.

Abstract
Air quality estimation through sensor-based methods is widely
used. Nevertheless, their frequent failures and maintenance chal-
lenges constrain the scalability of air pollution monitoring efforts.
Recently, it has been demonstrated that air quality estimation can
be done using image-based methods. These methods offer several
advantages including ease of use, scalability, and low cost. However,
the accuracy of these methods hinges significantly on the diversity
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and magnitude of the dataset utilized. The advancement of air qual-
ity estimation through image analysis has been limited due to the
lack of available datasets. Addressing this gap, we present TRAQID
- Traffic-Related Air Quality Image Dataset, a novel dataset cap-
turing 26,678 front and rear images of traffic alongside co-located
weather parameters, multiple levels of Particulate Matters (PM) and
Air Quality Index (AQI) values. Spanning over multiple seasons,
with over 70 hours of data collection in the twin cities of Hyderabad
and Secunderabad, India, the TRAQID offers diverse day and night
imagery amid unstructured traffic conditions, encompassing six
AQI categories ranging from “Good” to “Severe”. State-of-the-art air
quality estimation techniques, which were trained on a smaller and
less-diverse dataset, showed poor results on the dataset presented
in this paper. TRAQID models various uncertainty types, includ-
ing seasonal changes, unstructured traffic patterns, and lighting
conditions. The information from the two views (front and rear) of
the traffic can be combined to improve the estimation performance
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in such challenging conditions. As such, the TRAQID serves as a
benchmark for image-based air quality estimation tasks and AQI
prediction, given its diversity and magnitude. Dataset Link

CCS Concepts
• Computing methodologies → Artificial intelligence; Com-
puter vision; Image and video acquisition;
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1 Introduction
Air pollution poses a significant global health concern, with air
quality deteriorating due to emissions from stationary and mobile
sources [36]. Traffic-related pollution significantly deteriorates am-
bient air quality, emphasizing the crucial importance of monitoring
air quality in these areas [3, 37]. The Air Quality Index (AQI), a
metric ranging from 0 to 500, provides a measure of air quality,
with lower values indicating better air quality and higher values in-
dicating worse air quality. The AQI is determined based on various
pollutants such as particulate matter (PM2.5 and PM10), which are
minute solid or liquid particles suspended in the air, measured in
𝜇𝑔/𝑚3, along with other gaseous pollutants. Particularly in India,
the overall air quality is mainly degraded due to PM2.5 and PM10
[16]. The Central Pollution Control Board (CPCB), India [14] has set
up pollution monitoring stations across various cities to monitor air
quality. These stations have expensive monitoring instruments and
equipment to measure various atmospheric parameters. However,
many of these stations are too far apart to capture local pollution
events effectively. For instance, in the twin cities of Hyderabad and
Secunderabad, which cover an area of 650 km2, there are only 14
CPCB stations1. According to [28], pollution levels fluctuate every
300-500 meters due to the diverse nature of Indian cities. This sparse
distribution fails to provide the necessary granularity for reliable
air quality monitoring across the urban landscape. Furthermore,
these stations capture data points at 15-minute intervals, which is
insufficient for real-time air quality assessment.

As a solution, many cities have deployed devices with low-cost
PM sensors to address this issue, but they often require frequent
maintenance and can be unreliable [2, 28]. While these low-cost
sensors offer improved spatial coverage, they present significant
challenges when scaled to city-wide deployment, particularly in
large Indian urban centers. The sheer size of these cities, combined
with the high density of pollution sources, necessitates an exten-
sive network of sensors. This approach incurs substantial costs in
terms of device maintenance, calibration, and replacement, mak-
ing it economically and logistically challenging to implement and
sustain over time. Image-based algorithms offer a cost-effective
1https://airquality.cpcb.gov.in/AQI_India/

alternative, providing higher spatial and temporal resolution for air
quality monitoring. However, the scarcity of comprehensive image-
based air quality datasets hinders progress in developing robust
and scalable solutions for this critical environmental challenge.

1.1 Image-Based PM Estimation Model
PM in air affects optical images primarily through light scatter-
ing, including Rayleigh and Mie scattering [20]. This interaction is
described by the Beer-Lambert law:

𝑡 = 𝑒−𝛾𝑑 (1)

where 𝑡 represents transmission, 𝛾 denotes the medium extinction
coefficient (a function of particle size and concentration), and 𝑑

is the light propagation distance. This relationship suggests that
PM concentration can be estimated if the extinction coefficients
at various wavelengths are determined. The extinction coefficient
can be derived from observed imagery using the following model
[5, 9, 10, 23]:

𝐼 (𝑥,𝑦) = 𝑡 (𝑥,𝑦) 𝐽 (𝑥,𝑦) + (1 − 𝑡 (𝑥,𝑦))𝐴 (2)

In this equation, 𝐼 represents the observed hazy image, 𝑡 is the
transmission from scene to camera, 𝐽 denotes scene radiance, and
𝐴 is the airlight color vector. The first term, 𝑡 (𝑥,𝑦) 𝐽 (𝑥,𝑦), repre-
sents direct transmission of scene radiance to the camera, while
the second term, (1 − 𝑡 (𝑥,𝑦))𝐴, describes airlight - ambient light
scattered by air molecules and PM into the camera. This model
assumes constant atmospheric and lighting conditions, although
these factors may vary with weather, solar position, time of day,
and season. Moreover, both J and A are influenced not only by mete-
orological conditions and solar position but also by PM distribution
and concentration.

Color information plays a crucial role in PM estimation based
on light scattering principles. Rayleigh scattering, predominant
when particles are significantly smaller than the wavelength of
light, exhibits strong wavelength dependence (𝜆−4), contributing
to the sky’s blue appearance. Conversely, Mie scattering occurs
when particle sizes are comparable to light wavelengths, producing
a white glare around the sun in particulate-laden air. The combined
effects of Rayleigh and Mie scattering modulate the brightness and
color saturation of outdoor images. Consequently, color and bright-
ness information encapsulate particle concentration and size data,
serving as distinctive features for PM estimation. This relation-
ship between optical characteristics and atmospheric particulate
content forms the basis for image-based air quality assessment
methodologies.

1.2 Related Work
Limited efforts have been devoted to predicting AQI using image-
based methods, particularly in the aftermath of the COVID-19 pan-
demic, with a surge in research activity in this field. Prominent
companies such as Google [27], Microsoft [32], IBM [24], and oth-
ers have been actively engaged in this domain, employing advanced
machine learning techniques to monitor air pollution. Researchers
globally utilize images captured from stationary or mobile sources
to analyze PM concentrations (PM2.5 and PM10) and predict AQI
[15, 17, 19, 22, 25, 38]. However, most of the research in this field
relies on custom datasets tailored to specific studies.

https://github.com/omi-kron/TRAQID---Traffic-Related-Air-Quality-Image-Dataset.git
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Dataset: Liu et al.[19] gathered 6587 images from three cities, Bei-
jing and Shanghai in China and Phoenix in the U.S., from fixed
scenes. The corresponding PM2.5 data was obtained from local U.S.
consulates, while weather and geographical data for the three cities
were sourced from online websites. Kow et al.[17] gathered 3549
images taken in Kaohsiung, Taiwan, accompanied by correspond-
ing air quality data, including PM2.5, PM10, and AQI, retrieved from
nearby air quality monitoring stations. The dataset includes im-
ages captured during both daytime and nighttime. Zhang et al.[38]
collected a total of 1241 sky images from a stationary location in
Lanzhou, China, spanning from 2018 to 2019, and collected corre-
sponding PM2.5, PM10 and gaseous pollutants data from the nearby
monitoring station. In recent studies, Nilesh et al.[25] curated a
dataset comprising 5048 images captured from roads of Hyderabad,
India using a vehicular setup. Each image was paired with cor-
responding weather data and PM values obtained from sensors.
The data collection occurred over two distinct seasons within a
single year. Mondal et al.[22] used images captured from smart-
phone cameras to predict PM2.5 concentration. They collected a
custom dataset comprising 1818 images captured within Dhaka,
Bangladesh, spanning from 2020 to 2022. The PM2.5 concentration
data corresponding to the images was obtained from the local US
consulate, which releases hourly updates of the AQI. However, the
dataset lacks features such as temperature and humidity, which
play an effective role in determining the air quality.

AQI Estimation: Using either custom-collected or publicly avail-
able datasets, many researchers have used traditional and advanced
deep learning methods to estimate the AQI and PM values. Liu et
al.[19] utilized light attenuation and color information as significant
image features for estimating PM levels from images. Additionally,
machine learning models were employed to predict PM2.5 values.
Mondal et al.[22] utilized a custom-made CNN model with a total
of 4.8 million parameters, featuring a single neuron in the final
fully connected layer, to predict the PM2.5 value. Kalajdjieski et
al.[15] employed a multimodal approach, combining InceptionV3
[35] for image features and an MLP for weather data features. They
extended the Inception architecture with a new sub-model path
processing weather data through a three-layered MLP. The MLP
output is concatenated with the Inception model’s output in the
final fully connected layer, feeding into a softmax layer to predict
the AQI category. Zhang et al.[38] presented AQC-Net, a deep con-
volutional neural network model based on ResNet [13], aimed at
classifying AQI categories. They integrated a self-supervision mod-
ule called the Spatial and Context Attention block (SCA) into the
ResNet18 architecture. This addition enabled encoding of broader
scenes into local features and aggregation of spatial context in-
formation to enhance specific scene details within each channel.
Nilesh et al.[25] employed a combination of deep learning and ma-
chine learning methods to predict AQI categories. They utilized
YOLOv5 [8] to identify vehicles contributing to pollution in input
images. A visibility metric was computed using BRISQUE [21] to
assess image clarity. Image features (vehicle count and visibility
score) were concatenated with weather features (temperature and
humidity) to create feature vectors for each sample. Subsequently, a

Random Forest (RF) [4] was trained to classify images into various
AQI categories.

1.3 Contribution
We introduce TRAQID - Traffic-Related Air Quality Image Dataset,
designed for predicting AQI through image analysis. Our key con-
tributions are:

1) The TRAQID dataset, comprising 26,678 samples from 70
hours of video capture, is the first of its kind to feature both front
and rear traffic scene images alongside co-located sensor data. It
uniquely combines vehicular traffic observations with essential
environmental parameters such as temperature, relative humidity,
and PM concentrations. This comprehensive approach captures the
variability in urban environments, including diverse traffic patterns,
building structures, and geographical features, providing a rich re-
source for analyzing the interplay between traffic dynamics and air
quality.

2) The dataset incorporates AQI measurements categorized into
six distinct ranges from “Good” to “Severe”, aligning with the classi-
fication schema outlined by the CPCB, India. It comprises a diverse
collection of images containing both day and night settings across
three primary seasons - Summer, Monsoon and Winter, spanning
three distinct years.

Table 1 compares TRAQID with previously collected datasets,
highlighting its unique features and advantages. Figure 1 showcases
sample images, demonstrating the dataset’s diversity across AQI cat-
egories, views, and environmental conditions. This comprehensive
approach ensures that TRAQID captures various environmental
conditions and traffic scenarios, making it a valuable resource for
developing robust air quality estimation models.

2 The TRAQID Dataset
The dataset was gathered within the twin cities of Hyderabad and
Secunderabad, India, where over 16.1 million vehicles operate on
the roads amidst various traffic scenarios [12]. This was achieved
by using a data collection vehicle equipped with dashboard cameras
and air quality sensing equipment.

2.1 Camera and Air Quality Sensor Setup
The data collection vehicle is equipped with two dashboard cameras
as shown in Figure 2(a): 1. DDPAI Mola N3 [6] employed for front
image capture, features a 5 MP CMOS sensor capable of recording
in 2688× 1944 ultra HD resolution, and 2. DDPAI X2 Pro [7] utilized
for rear image capture, offers a 120° lens at the rear, ensuring a
broad field of view while recording at 1920 × 1080 resolution. Both
cameras record at a frame rate of 30 fps. These features facilitate
high-quality image acquisition, enhancing data accuracy in urban
settings.

The AQ Node is a custom device that measures PM concen-
trations and weather parameters at a frequency of 5 seconds. It
includes an EspressIF ESP32 microcontroller unit (MCU) [33], a Nova
SDS011 PM sensor [34] to measure PM2.5 and PM10 concentrations,
and a BME280 sensor [11] to measure temperature and relative hu-
midity. Additionally, an Aeroqual S500 [18], a reference device with
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Dataset Multiple View Night
Images

Co-Located
data samples

Sequential
Arrangement

Weather
Parameters

Season
Diversity

Dataset
Mobility

Publicly
Available

#
Samples

Mondal et al. [22] ✘ ✘ ✘ ✘ ✘ NA ✔ ✔ 1818

Liu et al. [19] ✘ ✘ ✘ ✘ ✔ NA ✘ ✔ 6587

NWNU-AQI [38] ✘ ✘ ✘ ✘ ✔ NA ✘ ✘ 1241

Nilesh et al. [25] ✘ ✘ ✔ ✘ ✔ ✔ ✔ ✘ 5048

Kow et al. [17] ✘ ✔ ✘ ✘ ✘ NA ✘ ✘ 3549

KHI-AQI [1] ✘ ✘ ✘ ✘ ✘ NA ✘ ✘ 1001

TRAQID (Ours) ✔

(Front & Rear) ✔ ✔ ✔ ✔ ✔ ✔ ✔ 26678

Table 1: Comparison of previously collected datasets with TRAQID. ‘Multiple view’ indicates if multiple cameras were used
to capture the scene. ‘Night Images’ column indicates if the dataset has included nighttime images. NA in season diversity
indicates that seasonal information is not available for the dataset.

℃

5 km

Figure 2: Summary of TRAQID dataset creation: (a) illustrates the data collection vehicle setup, while (b) displays the street view
of the route taken during the campaign. (c) outlines the preprocessing step, and (d) showcases a single TRAQID data sample.

a primary function of calibrating the PM sensors, was deployed,
which captures a data point at a 1-minute frequency. The Nova PM
sensor can measure particle size from 0.3 to 10 𝜇𝑚 with a measuring
range of 0.0 to 999.9 𝜇𝑔/𝑚3. The AQ Node operates at a temperature
range from -40◦C to +125◦C and a humidity range from 0% to 100%
[28]. This equipment was mounted on the data collection vehicle to
collect air quality data, capturing not only PM values but also the
temperature and relative humidity, which are essential for assessing
overall air quality [30].

2.2 Dataset Collection Campaign
The data collection campaign was conducted in the twin cities of
Hyderabad and Secunderabad from October 2022 to July 2024, using
the data collection vehicle shown in Figure 2(a). This vehicle trav-
elled around the urban agglomeration, covering almost 2000 km

at an average speed of 35 km/hr. The dataset collected in this cam-
paign includes images extracted from 70+ hours of video, recorded
on 20 distinct days across 6 different months in 3 years, ensuring di-
verse representation of environmental and traffic conditions in the
twin cities. The specific route taken is detailed in Figure 2(b), with
the paths plotted on OpenStreetMap [26] using GPS coordinates
obtained from a mobile phone during the collection. The primary
focus remained on collecting data within the city, with careful
route planning to keep the vehicle within city limits. Samples were
systematically collected throughout three distinct seasons: 1. Mon-
soon (October 2022, July 2024) 2.Winter (January, February and
December 2023) and 3. Summer (March 2024) showcasing diverse
climatic conditions.
Significance of City-Wide Coverage: The TRAQID dataset rep-
resents a significant advancement in air quality monitoring by
providing comprehensive coverage of the twin cities of Hyderabad
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and Secunderabad. Capturing data across an entire urban agglom-
eration is a formidable task with several advantages. Firstly, it
ensures the representation of diverse micro-environments within
the cities, including residential areas, commercial zones, industrial
sectors, and varying traffic densities. This diversity is crucial for
developing robust air quality estimation models that can generalize
across different urban settings. Secondly, the city-wide approach
allows for capturing spatial variations in air quality, which can
be significant even within short distances in urban areas due to
localized pollution sources and varying topography. Moreover, the
comprehensive nature of TRAQID facilitates the study of domain
adaptation techniques for intercity air quality modelling. By captur-
ing the full spectrum of urban environments, TRAQID provides a
rich foundation for developing models that can potentially adapt to
other urban areas, paving the way for more generalized air quality
estimation systems across diverse city landscapes.

2.3 Image and Sensor Data Preprocessing
Image Data Preprocessing: The cameras mounted on the vehicle
recorded 1-minute videos at a resolution of 1920× 1080 and a frame
rate of 30 fps. To align with the sampling rate of the sensors, we
sampled images from the videos every 5 seconds to eliminate any
repetitive frames and ensure consistency between the images and
corresponding sensor data. Further, we filtered out outlier images
manually, such as those affected by high amounts of headlight
glare and extremely low illumination. The images were resized to
640 × 360 dimensions, making them compatible with deep learning
architectures. To maintain dataset anonymity, we blurred both the
number plates and faces within the images. Green-coloured number
plates (indicating electric vehicles) were blurred while preserving
their colour.

Sensor Data Preprocessing: To ensure the reliability of our air
quality measurements, we implemented a rigorous calibration pro-
cess for our low-cost PM sensors, following the method described
by Ayu et al.[28]. This process involved comparing sensor read-
ings against a reference device (Aeroqual S500) in a controlled
environment, applying linear regression for calibration, and using
the interquartile range (IQR) method to eliminate outliers. The
resulting calibrated sensor data was then synchronized with our
image captures, creating what we term “co-located” data points.
This co-location approach is crucial for our vision-based air qual-
ity estimation task, as it establishes a direct temporal and spatial
correspondence between the visual characteristics of traffic scenes
and their associated air quality measurements. By ensuring this
tight coupling between visual data and air quality parameters, we
provide a solid foundation for developing and evaluating computer
vision algorithms that can infer air quality from image content.

2.4 Dataset Description and Statistical Analysis
The proposed dataset contains a comprehensive compilation of
26,678 data samples, precisely gathered to ensure diversity across
various environmental contexts. The dataset contains 13789 images
obtained during the daytime (6 AM - 6 PM) and 12889 images
obtained at nighttime (6 PM - 6 AM), which enables the possibility
of predicting the AQI at different times of the day. This is especially

useful for studying pollutants primarily observed at a particular
time, such as smog, usually observed at night. The AQI values of the
data samples are computed using the pollutants PM2.5 and PM10
concentration values as defined by the CPCB, India. Further, the
AQI levels are categorized into six distinct classes which are as
follows: 1. Good (0 - 50) 2. Satisfactory (51 - 100) 3. Moderate
(101 - 200) 4. Poor (201 - 300) 5.Very Poor (301 - 400), and 6. Severe
(> 400). As shown in Figure 2(d), each data sample comprises: 1.
Front and rear images 2. Temperature (◦C) 3. Relative humidity
(%) 4. Season 5. Timestamp 6. PM2.5 concentration value 7. PM10
concentration value 8. AQI Value 9. AQI category (according to
the CPCB standards). The front and rear images, with 640 × 360
× 3 dimensions, help understand the traffic scenario’s vehicular
dynamics. Temperature and relative humidity are scalar, and the

Figure 3: Histogram of PM2.5, PM10, AQI value, and AQI cate-
gory (Best viewed in color)

Figure 4: Distribution of the Dataset with respect to AQI
categories and seasons.
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AQI Category→
Season/Time↓ Good Satisfactory Moderate Poor Very Poor Severe Mean

Temp.(◦C)
Mean

Humidity (%)
Mean
PM2.5

Mean
PM10

Mean
AQI Value

Std. Dev.
AQI Value

Monsoon 643 7296 1262 407 877 82 29 49 56 74 109 86

Winter 101 5656 1971 999 882 601 30 36 74 132 152 126

Summer 0 81 4220 877 474 249 36 23 73 209 190 90

Day 328 6212 3312 1681 1439 817 32 37 72 157 164 126

Night 416 6821 4141 602 794 115 29 39 60 92 121 80

Table 2: Distribution of Air Quality Index (AQI) categories across seasons and day/night periods, along with mean temperature,
humidity, PM2.5, PM10, and AQI values.

season is categorical (summer, winter, monsoon). The timestamp
contains the date and time of the sample captured. Another notable
feature of the dataset is the sequential organization of the samples.
Since the data was collected on 20 different dates, the data samples
collected each day form a sequence, representing the progression
of air quality as the data collection vehicle traverses the streets.
For detailed dataset directory structure, refer to the supplementary
material.

Figure 3 presents the histogram of labels for both day and night
data samples. Figure 4 displays the dataset distribution across AQI
categories and seasons, highlighting a deficiency in the “good” cat-
egory compared to other categories. This suggests that AQI is gen-
erally adverse in traffic scenarios, with most data samples ranging
from “satisfactory” to “moderate”, reflecting the typical air quality
in Hyderabad city. The “poor”, “very poor”, and “severe” categories
are significant, pointing to local events like construction activities,
industrial operations, and open burning as contributing factors.

Analysis of air quality data reveals distinct seasonal and diurnal
variations in pollutant concentrations andAQI categories. As shown
in Table 2, monsoon season exhibited the best air quality with 643
‘Good’ and 7,296 ‘Satisfactory’ AQI days, and the lowest mean AQI
of 109. Conversely, summer presented the worst conditions, with
zero ‘Good’ AQI days, the highest mean PM10 (209 𝜇𝑔/𝑚3), and
highest mean AQI (190). Winter recorded 601 ‘Severe’ AQI days
and the highest mean PM2.5 (74 𝜇𝑔/𝑚3). Diurnal patterns showed
poorer daytime air quality (mean AQI 164) compared to nighttime
(mean AQI 121), with higher frequencies of ‘Poor’, ‘Very Poor’,
and ‘Severe’ categories during the day. PM10 levels consistently
exceeded PM2.5 across all temporal divisions. Summer recorded
the highest mean temperature (36◦C) and lowest humidity (23%),
while monsoon showed moderate temperatures (29◦C) and high
humidity (49%). These findings highlight the complex relationship
between meteorological factors and air quality.

3 Tasks
The primary objective behind the proposed dataset revolves around
predicting air quality using both images and weather parameters.
In the context of supervised learning, we define 𝑥𝑖 as single data
point features which contains: images (front and rear), temperature,
relative humidity, season, and timestamp. Conversely, 𝑦𝑖 denotes
the corresponding ground truth labels, encompassing PM2.5, PM10,
AQI value, and AQI category. Next, we outline the specific down-
stream tasks associated with this dataset.

Task 1: PM2.5 Estimation: Given a single data point 𝑥𝑖 , the objec-
tive is to estimate the PM2.5 concentration value as a real number.
Task 2: PM10 Estimation: Given a single data point 𝑥𝑖 , the objec-
tive is to estimate the PM10 concentration value as a real number.
Task 3: AQI Value Estimation: Given a single data point 𝑥𝑖 , the
objective is to estimate the AQI value as a real number.
Task 4: AQI Category Estimation: Given a single data point 𝑥𝑖 ,
the objective is to classify the AQI into six distinct categories.

The initial three tasks are framed as regression challenges, whereas
the final task is delineated as a classification problem. Address-
ing the classification task holds greater significance from an in-
terpretability standpoint, as AQI categories offer more practical
relevance in downstream applications. Furthermore, the sequential
organization described in section 2 facilitates the establishment of
connections between these data samples as a sequence. This adds
valuable context and allows for the exploration of spatial patterns.
By organizing the data as a sequence, advanced sequence mod-
elling architectures can be used to capture and analyze the spatial
dependencies present in the dataset.

4 Experiments and Benchmark Results
Drawing from the methodologies outlined in Section 1.2, we con-
ducted benchmarking of the most effective approaches on the
TRAQID dataset for the tasks specified in Section 3. The methods
considered for benchmarking the dataset were those by Mondal et
al.[22], Zhang et al.[38], Nilesh et al.[25], and Kalajdjieski et al.[15].
We split the TRAQID dataset into train 80%, validation 10% and test
10% sets. In regression tasks i.e. PM2.5 estimation, PM10 estimation,
and AQI value estimation, performance evaluation was conducted
using Root Mean Square Error (RMSE) and Mean Absolute Error
(MAE) metrics. For the classification task, which is AQI category es-
timation, accuracy and F1-score metrics were used as performance
evaluation. The hyperparameters are taken from the corresponding
methodologies.

4.1 Experiments
As mentioned above, the following experiments were conducted
to benchmark the specified methodologies on the TRAQID dataset.
As defined in Mondal et al.[22], a modified version of the standard
CNN framework was used to estimate PM2.5, PM10, AQI value and
AQI categories. This architecture consisted of a total of 19 layers,
encompassing both convolutional and fully connected layers, with
approximately 4.8 million parameters in total. Rectified Linear Unit
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Method
PM2.5 Estimation PM10 Estimation AQI Value Estimation AQI Category Estimation

RMSE ↓ MAE ↓ RMSE ↓ MAE ↓ RMSE ↓ MAE ↓ Accuracy ↑ F1-Score ↑

Mondal et al.[22] 32.81 19.50 55.65 30.62 60.34 36.69 0.64 0.61

Kalajdjieski et al.[15] 33.90 21.47 51.47 27.39 68.28 41.07 0.60 0.56

Nilesh et al.[25] 22.62 13.68 46.25 22.57 54.24 33.19 0.73 0.71

AQC-Net [38] 23.31 14.45 44.23 21.23 52.21 31.67 0.75 0.74

Table 3: Comparison of methodologies on the TRAQID dataset. The first three columns depict the performance of regression
tasks, while the last column illustrates the performance of classification tasks.

(ReLU) activation function was used, and the model was trained for
100 epochs with early stopping criteria and a learning rate of 1𝑒−3.

According to Zhang et al.[38], the AQC-Net was employed for
both regression and classification tasks. The architecture contains
a total of 0.03 million parameters. Training was conducted for 100
epochs with an initial learning rate of 1𝑒−2, subsequently reduced
by a factor of 0.1 every 30 epochs.

As mentioned in Nilesh et al.[25], YOLOv5 was used to obtain
vehicle counts from both rear and front images, which were subse-
quently aggregated to form the image features, while the weather
features remained unchanged. However, since our dataset includes
night images, the BRISQUE methodology was ineffective in deter-
mining image visibility scores and was excluded. For regression,
RF regressor models predicted PM concentrations and AQI values,
while RF classification models predicted AQI categories.

As defined in Kalajdjieski et al.[15], a multimodal architecture
was implemented that leverages InceptionV3 [35] to extract image
features, while a three-layer MLP with 64 neurons in each layer is
utilized to extract weather features (including temperature, relative
humidity, season, and timestamp categorized as day/night). The
output feature vector from the MLP is concatenated with the output
from InceptionV3 at the fully connected layer, which is then fed into
a softmax layer for AQI category prediction. For regression tasks,
instead of a softmax layer, a single neuron output layer is trained
to predict PM or AQI values. The model contains approximately 24
million parameters. The model was trained for 100 epochs with a
learning rate of 1𝑒−3, using the early stopping criteria.

For all the methodologies implemented above, the Mean Squared
Error (MSE) loss function was used for regression tasks, while the
cross-entropy loss function was utilized for classification tasks. In
[15, 22, 38], the TRAQID dataset’s front and rear images were se-
quentially processed by their respective CNN model. Subsequently,
the outputs were concatenated and passed to the fully connected
layer. PyTorch [29] was utilized for all implementations.

4.2 Results
The results of the methodologies on the TRAQID dataset are pre-
sented in Table 3. It is clearly observed that the conventional CNN
models used by [15, 22] fail to grasp the intricacies of the task at
hand. This is primarily due to the fact that standard CNN mod-
els may struggle to incorporate the diverse factors affecting air

quality, including industrial activities, construction, environmen-
tal variations, and geographical features, into their predictions.
AQC-Net [38] stands out among the methods, demonstrating su-
perior performance in three tasks which is PM10 estimation, AQI
value estimation and AQI category estimation. This highlights the
effectiveness of attention-based methods in identifying pollution-
contributing objects in images. However, the top F1-score achieved
for the AQI category estimation task is just 0.74, highlighting the
significant impact of dataset size and diversity on the complexity of
the task. Inclusion of nighttime images brings challenges like low
illumination and glare through headlights which makes the task
at hand more complicated in compare to the datasets which only
contains daytime images.

Nilesh et al.[25] achieved the highest score in PM2.5 estimation
task, demonstrating that incorporating vehicle counts alongside
weather parameters can aid in air quality estimation. This can be
viewed as a specific instance of attention mechanism, where vehicle
emissions constitute a significant pollution source on roads and
streets. It suggests a positive correlation between traffic volume
and pollution levels. However, the model achieved only a 0.71 F1-
score for the AQI category estimation task, representing a 10%
decrease for the same task compared to their proposed dataset. This
reduction may be attributed to the improved season diversity in our
dataset, feature not present in previous datasets. Additionally, the
presence of unstructured traffic further complicates the task. Figure
5 shows some of the classification challenges associated with the
dataset. The top and bottom left figures show data samples having
high ground truth AQI value. However, the best-performing model
for this task predicts a very low AQI value, indicating a failure to
detect pollution caused by nearby bridge construction. Similarly,

Season/Time
PM2.5

Estimation
PM10

Estimation
AQI Value
Estimation

AQI Category
Estimation

RMSE ↓ MAE ↓ RMSE ↓ MAE ↓ RMSE ↓ MAE ↓ Acc ↑ F1-Score ↑
Monsoon 19.70 10.16 14.91 8.56 37.57 20.86 0.78 0.76
Winter 16.84 9.76 36.67 17.30 43.01 24.63 0.79 0.78
Summer 29.12 16.66 72.78 48.08 69.80 46.03 0.73 0.68
Day 25.73 14.37 54.93 28.17 59.40 34.54 0.76 0.74
Night 17.25 9.14 26.59 12.68 37.71 21.21 0.80 0.79
Front 29.32 18.78 52.53 28.76 60.39 41.45 0.72 0.70
Rear 31.68 21.35 53.89 29.43 65.23 43.87 0.69 0.68

Table 4: Evaluation of the top-performing model’s [38] per-
formance on both season and time wise dataset.
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the model struggles with low illumination in the top right image
and unstructured traffic scenario in the bottom right image. Please
refer to the supplementary material for further insights into the
dataset challenges.

4.3 Seasonal and Diurnal Variations
To investigate seasonal and diurnal variations, we segmented the
dataset into multiple splits. For seasonal analysis, we created three
subsets: 1. Monsoon, 2. Winter, and 3. Summer. For diurnal analysis,
we divided the data into two categories: 1. Day and 2. Night. Each of
these split datasets was further partitioned into training (80%) and
validation (20%) sets. We then trained the best-performing model
for all four defined tasks to each of these datasets. Table 4 presents
the results for each dataset.

The challenge of modeling summer data is evident, even for the
best-performing model, primarily due to the fluctuation in tempera-
ture and humidity during summers. Conversely, the model achieved
its best performance on monsoon data, likely because a majority
of the data samples fall within the 0 - 200 AQI range, attributed
to the rainfall during the monsoon season. As for the day/night
comparison, the model exhibited superior performance in predict-
ing nighttime air quality parameters compared to daytime. This
can be attributed to several factors: reduced human activity and
more stable meteorological conditions at night, resulting in lower
variability in air quality (as shown in Fig. 3 and Table 2); a more
stable atmospheric boundary layer, leading to consistent pollutant
concentrations; and fewer extreme AQI categories (“Poor”, “Very
Poor”, “Severe”) at night, which aligns with the model’s tendency
to perform better on less extreme values. The reduced influence
of rapid fluctuations from daytime events (e.g., rush hour traffic,
sudden weather changes) likely enhances the model’s nighttime
predictions. Analysis of camera perspectives revealed inferior per-
formance when using single views, with front-view models per-
forming marginally better than rear-view models. This indicates
the importance of utilizing both camera perspectives for optimal
air quality prediction.

Figure 5: Data samples illustrating classification challenges
in the top performing model

4.4 Interpreting AQI Predictions via GradCAM
To visualize and interpret the AQC-Net [38] decision-making pro-
cess for AQI category estimation, we employed Gradient-weighted
Class Activation Mapping (GradCAM) [31]. The GradCAM tech-
nique was applied to the final convolutional layer of the trained
model, generating heatmaps that highlight the regions of input
images most influential in determining the predicted AQI category.
These visualizations were generated for multiple images across dif-
ferent AQI categories to analyze how the model’s focus shifts with
varying air quality conditions. As illustrated in Fig. 6, the model
consistently focuses on vehicles, particularly their exhaust areas,
across all AQI categories, indicating its recognition of vehicular
emissions as a crucial air quality factor. For “Good”, “Satisfactory”,
and “Moderate” categories, the model attends to urban structures
such as flyovers, buildings, and bridges. However, as AQI dete-
riorates from “Poor” to “Severe”, attention shifts towards open
areas and light sources, potentially seeking indicators of haze or
atmospheric clarity. Notably, in “Severe” AQI images, the model
considers broader image portions, suggesting an analysis of over-
all atmospheric conditions rather than specific pollution sources.
These observations suggest that the model has learned to associate
air quality with complex set of visual cues related to traffic patterns,
urban infrastructure, and atmospheric conditions.

5 Conclusion and Future Work
This paper introduced TRAQID, a novel dataset capturing 26,678
images of traffic across Hyderabad and Secunderabad, India, along-
side co-located air quality parameters (PM2.5, PM10, AQI value, and
AQI category) and weather data (temperature and humidity). The
dataset’s uniqueness lies in its front and rear camera setup, captur-
ing both day and night environments across different seasons. It has
a sequential arrangement of co-located data samples representing
the mobile traffic capture. By applying state-of-the-art image-based
algorithms on this dataset for estimating PM2.5, PM10, AQI value,
and category, we demonstrated that existing algorithms struggle
with such a diverse dataset spanning various seasons and times of
day. This underscores the importance of TRAQID in developing
robust methodologies for air quality classification and prediction.
Our GradCAM analysis revealed that the best-performing model,
AQC-Net, focuses on vehicles, urban structures, and atmospheric
conditions across different AQI categories, providing insights into
its decision-making process.

Future work based on TRAQID could include developing novel
image-based AQI estimation methods specifically tailored for traffic
conditions, leveraging the dataset’s front and rear image features
as well as the sequential arrangement of co-located data samples.
Additionally, TRAQID can facilitate research on several downstream
tasks, such as traffic density estimation, vehicle type classification,
urban infrastructure analysis, and studying correlations between
traffic patterns and air quality.
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Figure 6: GradCAM activation map visualization of the AQC-Net
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