
CV and IoT-based Remote Triggered Labs: Use Case of
Conservation of Mechanical Energy

by

Viswanadh K.S., KATHALKAR O, P. Vinzey, Nitin nilesh, Sachin Chaudhari, Venkatesh Choppella

in

IEEE FiCloud
: 1
-7

Report No: IIIT/TR/2022/-1

Centre for Communications
International Institute of Information Technology

Hyderabad - 500 032, INDIA
August 2022



CV and IoT-based Remote Triggered Labs:
Use Case of Conservation of Mechanical Energy

K. S. Viswanadh, O. Kathalkar, P. Vinzey, N. Nilesh, S. Chaudhari, V. Choppella
International Institute of Information Technology-Hyderabad (IIIT-H), India

Emails: {savitha.viswanadh, om.kathalkar, piyusha.vinzey, nitin.nilesh}@research.iiit.ac.in,
{sachin.chaudhari, venkatesh.choppella}@iiit.ac.in

Abstract—Remote Triggered Labs (RTL) are helpful for stu-
dents to work on laboratory experiments virtually anytime,
anywhere. Such setups can facilitate distance learning and are
helpful during pandemics. In this paper, the use of Computer-
Vision (CV) is demonstrated for RTL experiments. For this, a
use-case of the Conservation of Mechanical Energy experiment is
considered. A CV-based approach is used to estimate an object’s
velocity whose setup primarily consists of a microprocessor, a
camera and infrared (IR) sensors. The experiment is recorded,
and various CV techniques are employed to estimate the object’s
velocity. This paper also compares a CV-based and an IR
sensor-based approach to estimate the object’s velocity. Linear
regression applied to the CV-based implementation resulted in
an optimal mean-squared error (MSE), nearly 10 times better
than IR-based implementation.

Index Terms—Object tracking; Computer Vision (CV); Con-
servation of Mechanical Energy; Remote Triggered Labs; Inter-
net of Things (IoT)

I. INTRODUCTION

Many schools and colleges in developing countries, espe-
cially in rural areas, lack access to basic laboratory facilities.
During COVID-19, this situation got worse and even the edu-
cational institutes having good experimental setups could not
access their labs online. Remote triggered labs (RTL), which
are IoT-based labs, can come in handy in such situations as the
students can perform the experiments remotely on an actual
experiment setup over an internet browser from anywhere in
the world [1]–[3]. The user can control input parameters for
each experiment, and the corresponding outputs are returned
to the dashboard. These outputs can be viewed from a browser
on smart devices like laptops or smartphones. The results
are visualised in plots and tables to make the observations
conveniently and understand the experiment easily. These labs
help to gain hands-on experience critical to the learning and
teaching process. They help students develop scientific reason-
ing abilities, understand the process of scientific investigation,
and develop a broad understanding of scientific concepts.

RTL can host a variety of experiments from different
fields including Engineering, Physics, Chemistry and Biology.
Several universities have developed experiments for remote
labs that include MIT’s iLabs [1], NIT Surathkal’s SOLVE
Lab [2] and UNILabs [3]. There has been some more work on
RTL in the literature [4]–[7]. Experiments developed include

determining Hooke’s Law [4], determining the Young’s Modu-
lus of a specimen [5] and verification of Snell’s law [6]. In [7],
a reusable remote lab for teaching the subject of electronics
to students is presented. However, none of them use computer
vision (CV) algorithms for RTL experiments, which is the
focus of this paper. CV algorithms can be used to overcome
the limitations faced by measuring devices like sensors, where
data collection can be limited by physical constraints like
orientation, type and number of sensors that can be placed.

Specific contributions of this paper are

• A CV and IoT-based RTL implementation is proposed.
The proof of concept is demonstrated for the Physics
experiment of Conservation of Mechanical Energy.

• In this experiment, CV is used to estimate the velocity of
a moving object along different points on the track, which
are then shown to be close to the theoretical values found
based on the principle of conservation of energy.

• To improve the performance of CV-based velocity estima-
tion of the moving object at a given point, we use linear
regression to find the line of best fit for all the points on a
straight track. Also, parameters to the implementation are
changed to observe their effect on estimated velocities.

• A performance comparison of CV-based implementation
is carried out with infrared (IR)-based velocity estimation.
It is also shown that the CV-based implementation can
estimate velocity at any location on the track without the
need for a sensor.

Experimental setups utilising CV-based techniques for ob-
taining outputs are used in [8]–[11]. In [8], a motion analysis
system was developed for physical experimental education
using CV. The force acting on a moving object is visualised as
a vector overlapped on the object’s trajectory. In [9] and [10],
simple setups consisting of a camera and a computer were used
to analyse a falling object to determine the acceleration due
to gravity g. [10] mentions that the results can be published
onto a web page later. In [11], Raspberry Pi 4 with camera
module was used to set up an experiment that detects central
elastic collisions of two plastic balls, where OpenCV was
used to detect collisions. However, all these experiments
cannot be considered RTL experiments as they should be
performed manually. Also, publishing the results and resetting
the experiment are not automated or controlled remotely over
the internet.
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Fig. 1: An example of Conservation of Mechanical Energy

The rest of the paper is structured as follows: Section II
describes the physics of the use-case experiment, followed by
the description of the hardware designed in Section III. Section
IV presents the methodology of the CV-based approach for
estimating the object’s velocity. Section V shows the IR-
based approach for estimating velocity. Results are presented
in Section VI while Section VII concludes the paper.

II. EXPERIMENT

In this section, the principle of Conservation of Mechanical
Energy is discussed and later illustrated with an example.

A. Theorem

The principle of conservation of mechanical energy: This
states that the mechanical energy of a moving body at any
point remains constant throughout its motion.

According to the theorem, under the assumption that there
are no resistive forces like friction, the mechanical energy of
an object, ET , which is the sum of its kinetic energy Ek and
potential energy Ep, is always a constant, i.e.,

ET = Ep + Ek = constant. (1)

Here the kinetic energy Ek is the energy of motion and is
defined as

Ek =
1

2
mv2, (2)

where m is the mass of the point object and v is the in-
stantaneous velocity of the moving object. Also, gravitational
potential energy Ep is the energy of the object due to its
position relative to the earth and is defined as

Ep = mgh, (3)

where g is the acceleration due to gravity, and h is the height
of the object relative to an arbitrary reference level.

To keep the experiment simple and intuitive, only two forms
of energies, gravitational potential energy Ep and translational
kinetic energy Ek are considered throughout the experiment.
All the discussions and experiments are restricted to point
mass objects, i.e., when the object of interest covers a much
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Fig. 2: Plots of change in energy and velocity wrt
√
∆h

greater distance than its dimensions, it can be considered a
point object.

B. Example

Consider Fig. 1, where a ball is released from rest on a
frictionless triangular wedge of vertical height h1 and fixed to
the ground as shown. As the ball moves down the wedge, Ep

decreases while Ek increases as the magnitude of the velocity
of the ball increases. Consider an intermediate point where the
ball is at a height of hi and has a velocity vi. Using (1), the
total energy at the height hi is given by

ET =
1

2
mv2i +mghi. (4)

On the other hand, the total energy at the initial rest point is
entirely because of potential energy so that

ET = mgh1. (5)

Using (4) and (5), we get

mgh1 =
1

2
mv2i +mghi,

∴ v2i =
2mg(h1 − hi)

m
,

∴ vi =
√
2g∆h, (6)

where ∆h = h1 − hi is the height of the intermediate point
wrt topmost point (h1).

Fig. 2a shows the change in ET , Ep and Ek as the ball
falls down the wedge. It can be observed that the mechanical
energy ET is constant everywhere while Ep and Ek change
as the height of the object changes. From (6) and Fig. 2b,
it can be observed that vi ∝

√
∆h, indicating that when

an object falls down from a starting point (h1), its velocity
increases linearly with the square-root of difference of height
wrt starting point. Effectively, (1) becomes equivalent to (6)
and this will be used to show the conservation of mechanical
energy in further sections.

III. HARDWARE SETUP

Figs. 3a and 3b show the block architecture and circuit
design of the RTL setup designed to implement the experi-
ment. The setup essentially consists of a 3D modelled track,
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Fig. 3: Hardware description of the experimental setup

IR sensors [12], an active high relay module, a micro-servo
motor, a DC motor, Raspberry Pi 3B+ [13] and a Raspberry
Pi V2.1 camera module [14].

Raspberry Pi 3B+ is the microprocessor used in the RTL
setup that interfaces the dashboard with all the sensors and
actuators. This microprocessor is connected to a WiFi network
to host the experiment online. A 3D track is designed using
Fusion 360 [15] and printed with white poly-lactic acid (PLA)
material. All the dimensions and coordinates of the points on
the track are predetermined as shown in Fig. 4a. The structure
consists of a continuous track of two gradually varying slopes
along which IR sensors are placed and an escalator. The object,
in this case, a stainless steel ball of diameter 18.5 mm and
mass 500 g, is set to roll on the track. The escalator, operated
by a DC motor, forms a closed path in the track by raising
the object to the top position. The servo motor acts as a gate
(G), as shown in 4a, to bring the object to a halt and release it
from rest later. This gate can be controlled by a user remotely
via the dashboard. Point H in Fig. 4a denotes the point where
the velocity estimation starts (discussed in the later sections).

The Raspberry Pi camera, a widely-used camera with Rasp-
berry Pi, is used to record at 30 FPS and is fixed vertically
above the track. The camera is fixed such that the whole track
is captured while recording. Fig. 4b shows the actual setup
captured from the camera. All the hardware components are
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Fig. 4: Setup of the experiment

mostly hidden and covered with the background to avoid their
visual disturbances during recordings that might affect the
velocity estimations. It supports up to 40 FPS with full Field
of Vision (FoV) while a maximum of 90 FPS [16] is supported
with limited FoV which is undesirable as the whole track can
not be captured. So, a mobile camera [17] is used to record the
track at higher frame rates of 60, 240 and 480 FPS to analyse
the effect of change in FPS on the results. This mobile camera
can be replaced with a USB camera that supports higher FPS
and can be attached to the experimental setup.

IV. COMPUTER VISION BASED SETUP

To compute the object’s velocity, in our case, the steel ball,
a CV-based approach has been used. Using the setup explained
in section III, the experiment is recorded while the object is
moving on the track as shown in Fig. 4b. CV-based algorithms,
including background subtraction, morphological transforma-
tion, image filtering, thresholding, and contour detection, are
used to track the object. Fig. 5 shows the algorithmic pipeline
of the implementation.
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Fig. 5: Algorithmic pipeline of the CV-based setup for object tracking. The arrow in (e) object tracking shows the moving
steel ball being tracked in consecutive frames.(Best viewed in color)

A. Object localization and tracking

In order to localize and track the object from the video
captured, the following steps are taken:

1) Frame Acquisition: The first step is to extract the frames
from the video sequentially. The video is recorded from the
top view of the whole setup. The extracted frames are stored
for further processing.

2) Image Preprocessing: The image preprocessing is a 4-
step process which is as follows: i) background subtraction,
ii) morphological operation, iii) image filtering, iv) image
thresholding.

Our task is to localize the moving steel ball, which is a part
of the image foreground. The background is subtracted from
the image to get the foreground which mainly contains the
steel ball due to its motion. After getting the foreground image,
which can still contain noise, morphological operations are
used to remove these noises. This method helps to close small
holes inside the foreground objects in the frame. The closing
morphology method consists of repeated steps of dilation
followed by erosion. After this, image filtering processes the
edges using a median filter to remove the noise. Finally, the
image thresholding process is applied after converting the
image into grayscale. As a result, frames are converted into a
binary image, and a closed curve is formed around the steel
ball. For this process, median thresholding (threshold value
set to 127) is used. This process is done for the system to
create blobs for the later stage of inspection. Fig. 5(c) shows
the output of the frame after the image has been preprocessed.

3) Contour Detection: The preprocessed frame is used to
localise the desired object. The closed curves formed around
the object are used to determine the location of the steel ball. In
any image, Contours can be defined simply as a curve joining
all the consecutive points along the object’s boundary. As in
our case, the curves are formed around the steel ball (similar
can be seen in Fig. 5d), finding the contours will provide the
steel ball’s location. As the contour’s location is determined in
coordinates, a bounding box is drawn to highlight the region

of interest, i.e., the localised object and the centroid of the
bounding box is stored.

4) Tracking: After determining the object location in one
particular frame, the same process mentioned above is applied
to all the consecutive frames. In each frame, the object location
is determined and tracked further. Fig. 5(e) shows the bounding
box (green) around the moving object tracked in each frame.

B. Calculations

Algorithm 1 presents our approach to estimate the velocity
of the object between 2 frames. Its inputs include the frames
captured from the camera, coordinates of the object’s centroid
for each frame tracked earlier, a conversion factor (dw) to
convert pixel distance to real-life distance (specific for a given
track) and the frame rate of the input video (lines 2∼6). Every
two consecutive frames are considered and the Euclidean
distance between their centroids is calculated (lines 10∼11).
Then the velocity of the moving object is estimated (lines
12∼14) using the time taken to travel between two consecutive
frames.

V. IR SENSOR BASED SETUP

In the non-CV based setup, sensors are required to measure
velocity. In this paper, IR modules are used to measure the
velocity of the moving object. HW-201 Infrared Obstacle
Avoidance Sensor Module [12] is used for this purpose. Table I
shows the specifications of these sensors. IR sensors are placed
in rectangular 3D printed cases that are fitted to the track’s
edges, as shown in Fig. 4b, enabling the sensors to remain
in a fixed position. The modules are placed perpendicular to
the track, and their effective range is set to 3 cm to ensure
accurate detection of the object.

TABLE I: Specifications of HW-201 IR sensor [12]

Power
Supply

Distance
Range

Sampling
Rate

Sensitivity
Range

Frequency
Range

3-5V DC 2-30 cm 1KHz 800-1100 nm 35-41 KHz



Algorithm 1 Estimate Velocity (Vest)

1: procedure ESTVEL(F,C, dw, FPS)
2: Inputs:
3: F : array of captured frames
4: C: array of x and y coordinates of the centroids (frame-

wise)
5: dw: conversion factor (pixels to meters)
6: FPS: frame rate of the recorded video
7: Output:
8: Vest: Estimated velocities between every two frames
9: Method:

10: index = 0
11: while index ≤ |F | − 1 do
12: a = Euclidean distance between centroids of index

and index+1 frames (in pixels)
13: dp = dw × a

14: tp =
1

FPS

15: Vest =
dp

tp

16: index += 1

A. Calculations

An IR sensor is used to calculate the velocity in a Region
of Interest (RoI), where the average velocity is approximated
as the object’s instantaneous velocity. The RoI is a small
rectangular region (<8 cm2) in front of the IR sensor (marked
with dotted lines in blue regions in Fig. 4b), where the sensor
can detect the presence of an object. A timer is started when
the object passes through an RoI and is incremented till the
object leaves the RoI. Let ∆t be the total increments of the
timer. The estimated velocity of the ball using IR setup (VIR)
is

VIR =
0.0185

∆t
, (7)

where the distance covered by the object will be equal to the
diameter of the ball, i.e. 0.0185 m.

VI. RESULTS

In this section, the performance of CV-based implementa-
tion is first presented, including the effects of the number of
data points considered N and the effects of FPS of the video.
Later, the performance comparison between the CV and IR
based implementations is presented. For all the experiments
in this section, we are using the longest segment of the track,
i.e., segment GA of length 420 mm, where the IR sensors
are also deployed. Although the ball is released from point
G, velocities are only measured from point H which is 50
mm apart from G. This is done to ensure that the object
tracker is not disturbed by the movement of the gate G. The
segment HA of length 370 mm (shown by the blue region
in Fig. 4b) is divided uniformly into N data points and the
object’s velocities are estimated for these points. Heights hi

are measured with reference to point A (i.e., height of point A
= 0). Initial point G is at a height h1 of 20 mm. The conversion
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Fig. 6: Plots of VCV , VCV,fit and VT vs
√
∆h for N = 50 and

FPS = 480

Fig. 7: Plot of Ek, Ep, ET and E vs ∆h for N = 50 and FPS
= 480

factor dw is the ratio of length of the segment GA (420 mm)
and Euclidean distance of the segment GA (in pixels). In
general, students perform an RTL experiment for about 5-10
times in a session. Therefore, the number of experimental runs
Nr over which the results are averaged has been set to 10.
Unless specified, default values of g, N and frame rate of the
video in FPS are 9.8 m/s2, 50 and 480, respectively. For the
CV-based implementation, OpenCV [18] is used, which is a
well-known open-source library that is extensively used in the
domain of CV for image segmentation, object detection and
object tracking. It has several built-in functions specifically
designed for the purpose used directly in this work.

A. Effects of line fitting

Fig. 6 shows the theoretical velocities VT and estimated
velocities using CV (VCV and VCV,fit) at different points on
the track as a function of the square root of difference of height
of the object wrt point G (i.e.,

√
∆h). From the figure, it can

be observed that the curves are very close and the velocities
increase as ∆h increases. The second observation is that the
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error at various data points fluctuates. From (6), we have vi ∝√
∆h. Therefore, to improve the estimated values at individual

data points, we used the line of best fit using linear regression
VCV,fit, which can be seen to have better performance as seen
in Fig. 6. It can be observed that the estimated velocities are
deviating from VT as ∆h increases. This can be attributed to
measurement errors as well as friction along the track.

Fig. 7 shows the corresponding plot of Ek, Ep, ET and
the calculated mechanical energy E vs ∆h. Here, E is the
sum of Ek and Ep, where Ek is estimated using VCV,fit. It
can be noted that Ek is non-zero at point H as velocity is not
estimated from the release point of the object, i.e, point G.
Secondly, E deviates slightly from ET and this happens due
to friction and measurement errors.

B. Effect of the number of data points (N )

Figs. 8a and 8b show the line of best fits and mean square
errors (MSE) with respect to

√
∆h for N = 25, 50 and 100.

From Fig. 8a, it can be observed that the line of best fit comes
closer to the theoretical value as N increases. However, the
change from N = 50 to N = 100 is very small indicating that

N

M
SE

Fig. 9: Plot of MSE vs N for FPS = 480

FPS

M
SE

Fig. 10: Plot of MSE vs FPS for N = 10

the line of best fit obtained is nearly optimal and the remaining
bias is mainly due to friction. These claims are supported by
Fig. 8b, where MSE for N = 50 and N = 100 are very
similar and lower compared to N = 25. A similar result can
be observed from Fig. 9, which shows the MSE averaged over
the segment HA as a function of N .

C. Effect of FPS of the video

Fig. 10 shows the plot of MSE for VCV wrt VT for N = 10
and FPS = 30, 60, 240 and 480. The low value of N is chosen
to gather sufficient frames when FPS = 30. It can be observed
that the MSE reduces as the FPS values of the recorded video
increase. Secondly, it can be observed that the drop in MSE
decreases as FPS increases from 30 to 480 FPS. There is no
significant reduction in MSE for videos recorded above 240
FPS.

D. Comparison of CV and IR-based implementations

Table II shows the MSE for velocities estimated using
CV (i.e., VCV and VCV,fit) and sensor-based (i.e., VIR and
VIR,fit) implementations wrt VT where VIR,fit is the line
of best fit for velocities estimated using the IR-based imple-
mentation. Here, Ndisc = 5 discontinuous regions are chosen
for the IR-based implementation that is marked with dotted
lines in Fig. 4b. While using the CV-based implementation,
velocities are estimated for N = 50 and velocities of all the



data points lying in each of the Ndisc regions are averaged
for comparison purposes. It can be observed that the MSE
increases with height due to obvious reasons in both cases.
Also, line fitting improves the MSE for both implementations.
However, the best MSE values were obtained for VCV,fit that
are almost 10 times better showing that the CV implementation
can be used instead of IR-based implementation. Also, we can
increase the number of data points as we increase the FPS of
the recorded video, allowing us to monitor changes happening
at multiple points along the track. However, this is not possible
with sensor-based implementations as the number of sensors
that can be placed is constrained by the length of the track (a
maximum of 12 IR sensors can be placed for this track).

TABLE II: Comparison of velocities obtained using both
implementations for Ndisc = 5, N = 50 and FPS = 480

Region VT (m/s) MSE
for VIR

MSE
for VIR,fit

MSE
for VCV

MSE
for VCV,fit

1 0.25 0.0002 0.0001 0.0004 0.00005
2 0.32 0.0008 0.0007 0.0007 0.00008
3 0.40 0.0027 0.0013 0.0017 0.00015
4 0.48 0.0030 0.0019 0.0022 0.00023
5 0.59 0.0034 0.0024 0.0031 0.00031

VII. CONCLUSION

This paper proposed the use of CV for RTL and successfully
demonstrated the same for the use-case of Conservation of
Mechanical Energy. In this experiment, CV is used to estimate
the velocities of a moving object on different points along
the track, which are observed to be close to the theoretical
velocity values obtained from the principle of mechanical
energy conservation. In the proposed CV-based implementa-
tion, experiments were captured and processed using OpenCV
algorithms. Linear regression was performed on the obtained
velocities to improve the MSE wrt the theoretical values. A
comparison has been made between the CV and IR sensors-
based implementations to compute the velocity of the moving
object. After the detailed comparison,the CV-based implemen-
tation combined with linear regression outperforms the IR
sensors-based setup while computing the velocities. In the
future, it is intended to study the effects of friction and estimate
the coefficient of friction from the estimated velocity plots.
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